Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmaceuticals (Basel) ; 16(8)2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37631070

RESUMO

A metastatic brain tumor is the most common type of malignancy in the central nervous system, which is one of the leading causes of death in patients with lung cancer. The purpose of this study is to evaluate the efficacy of a novel treatment for metastatic brain tumors with lung cancer using neural stem cells (NSCs), which encode rabbit carboxylesterase (rCE) and the secretion form of tumor necrosis factor-related apoptosis-inducing ligand (sTRAIL). rCE and/or sTRAIL were transduced in immortalized human fetal NSCs, HB1.F3. The cytotoxic effects of the therapeutic cells on human lung cancer cells were evaluated in vitro with the ligands and decoy receptor expression for sTRAIL in the presence of CPT-11. Human NSCs encoding rCE (F3.CE and F3.CE.sTRAIL) significantly inhibited the growth of lung cancer cells in the presence of CPT-11 in vitro. Lung cancer cells were inoculated in immune-deficient mice, and therapeutic cells were transplanted systematically through intracardiac arterial injection and then treated with CPT-11. In resting state, DR4 expression in lung cancer cells and DcR1 in NSCs increased to 70% and 90% after CPT-11 addition, respectively. The volumes of the tumors in immune-deficient mice were reduced significantly in mice with F3.CE.sTRAIL transplantation and CPT-11 treatment. The survival was also significantly prolonged with treatment with F3.sTRAIL and F3.CE plus CPT-11 as well as F3.CE.sTRAIL plus CPT-11. NSCs transduced with rCE and sTRAIL genes showed a significant anti-cancer effect on brain metastatic lung cancer in vivo and in vitro, and the effect may be synergistic when rCE/CPT-11 and sTRAIL are combined. This stem-cell-based study using two therapeutic genes of different biological effects can be translatable to clinical application.

2.
Mol Metab ; 69: 101679, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36708951

RESUMO

OBJECTIVE: Cold stimuli trigger the conversion of white adipose tissue into beige adipose tissue, which is capable of non-shivering thermogenesis. However, what process drives this activation of thermogenesis in beige fat is not well understood. Here, we examine the ER protein NNAT as a regulator of thermogenesis in adipose tissue. METHODS: We investigated the regulation of adipose tissue NNAT expression in response to changes in ambient temperature. We also evaluated the functional role of NNAT in thermogenic regulation using Nnat null mice and primary adipocytes that lack or overexpress NNAT. RESULTS: Cold exposure or treatment with a ß3-adrenergic agonist reduces the expression of adipose tissue NNAT in mice. Genetic disruption of Nnat in mice enhances inguinal adipose tissue thermogenesis. Nnat null mice exhibit improved cold tolerance both in the presence and absence of UCP1. Gain-of-function studies indicate that ectopic expression of Nnat abolishes adrenergic receptor-mediated respiration in beige adipocytes. NNAT physically interacts with the ER Ca2+-ATPase (SERCA) in adipocytes and inhibits its activity, impairing Ca2+ transport and heat dissipation. We further demonstrate that NHLRC1, an E3 ubiquitin protein ligase implicated in proteasomal degradation of NNAT, is induced by cold exposure or ß3-adrenergic stimulation, thus providing regulatory control at the protein level. This serves to link cold stimuli to NNAT degradation in adipose tissue, which in turn leads to enhanced SERCA activity. CONCLUSIONS: Our study implicates NNAT in the regulation of adipocyte thermogenesis.


Assuntos
Adipócitos Bege , Animais , Camundongos , Adipócitos/metabolismo , Adipócitos Bege/metabolismo , Tecido Adiposo/metabolismo , Tecido Adiposo Branco/metabolismo , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Termogênese/fisiologia , Ubiquitina-Proteína Ligases/metabolismo , Retículo Endoplasmático/metabolismo
3.
J Cyst Fibros ; 22(1): 132-139, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36088207

RESUMO

BACKGROUND: Cystic fibrosis (CF) is characterized by reduced growth and lower body weight, which are multifactorial. CF mouse models lack key disease characteristics that predispose to a negative energy balance, such as pulmonary infections or exocrine pancreatic insufficiency, and yet they still exhibit a growth defect and an abnormally increased energy expenditure. Whether adipocyte thermogenesis contributes to the elevated resting energy expenditure in CF mice is unknown. METHODS: We examined the expression of CFTR in thermogenic brown adipose tissue (BAT) and investigated a functional role for CFTR using BAT-specific CFTR null mice (CFTRBATKO). RESULTS: The CFTR protein is expressed in mouse BAT at levels comparable to those in the lungs. BAT-specific inactivation of CFTR in mice increases whole-body energy expenditure associated with sympathetic stimulation by cold exposure. Weight gain on a high-fat diet is attenuated in these mice. However, CFTR-deficient brown adipocytes themselves have impaired, rather than enhanced, thermogenic responses. These cells feature decreased lipolysis and blunted activation of the cAMP/PKA signaling pathway in response to adrenergic stimulation. This suggests that compensatory heat production in other tissues likely accounts for the increased systemic energy expenditure seen in CFTRBATKO mice. CONCLUSIONS: Our data reveal a new role for CFTR in the regulation of adipocyte thermogenesis.


Assuntos
Adipócitos Marrons , Fibrose Cística , Animais , Camundongos , Adipócitos Marrons/metabolismo , Fibrose Cística/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Metabolismo Energético , Transdução de Sinais , Termogênese/fisiologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo
4.
Cell Rep ; 37(11): 110104, 2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34910916

RESUMO

Manipulation of energy-dissipating adipocytes has the potential to produce metabolic benefits. To this end, it is valuable to understand the mechanisms controlling the generation and function of thermogenic fat. Here, we identify Letm1 domain containing 1 (Letmd1) as a regulator of brown fat formation and function. The expression of Letmd1 is induced in brown fat by cold exposure and by ß-adrenergic activation. Letmd1-deficient mice exhibit severe cold intolerance concomitant with abnormal brown fat morphology, reduced thermogenic gene expression, and low mitochondrial content. The null mice exhibit impaired ß3-adrenoreceptor-dependent thermogenesis and are prone to diet-induced obesity and defective glucose disposal. Letmd1 was previously described as a mitochondrial protein, and we find that it also localizes to the nucleus and interacts with the transcriptional coregulator and chromatin remodeler Brg1/Smarca4, thus providing a way to impact thermogenic gene expression. Our study uncovers a role for Letmd1 as a key regulatory component of adaptive thermogenesis.


Assuntos
Tecido Adiposo Marrom/patologia , Metabolismo Energético , Glucose/metabolismo , Mitocôndrias/patologia , Proteínas Oncogênicas/fisiologia , Receptores Adrenérgicos beta 3/metabolismo , Receptores de Superfície Celular/fisiologia , Termogênese , Tecido Adiposo Marrom/metabolismo , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/metabolismo , Receptores Adrenérgicos beta 3/genética
5.
Cells ; 10(8)2021 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-34440750

RESUMO

Canines are useful in mammalian preclinical studies because they are larger than rodents and share many diseases with humans. Canine fetal fibroblast cells (CFFs) are an easily accessible source of somatic cells. However, they are easily driven to senescence and become unusable with continuous in vitro culture. Therefore, to overcome these deficiencies, we investigated whether tetracycline-inducible L-myc gene expression promotes self-renewal activity and tumorigenicity in the production of induced conditional self-renewing fibroblast cells (iCSFCs). Here, we describe the characterization of a new iCSFC line immortalized by transduction with L-myc that displays in vitro self-renewal ability without tumorigenic capacity. We established conditionally inducible self-renewing fibroblast cells by transducing CFF-3 cells with L-myc under the tetracycline-inducible gene expression system. In the absence of doxycycline, the cells did not express L-myc or undergo self-renewal. The iCSFCs had a fibroblast-like morphology, normal chromosome pattern, and expressed fibroblast-specific genes and markers. However, the iCSFCs did not form tumors in a soft agar colony-forming assay. We observed higher expression of three ES modules (core pluripotency genes, polycomb repressive complex genes (PRC), and MYC-related genes) in the iCSFCs than in the CFF-3 cells; in particular, the core pluripotency genes (OCT4, SOX2, and NANOG) were markedly up-regulated compared with the PRC and MYC module genes. These results demonstrated that, in canine fetal fibroblasts, L-myc tetracycline-inducible promoter-driven gene expression induces self-renewal capacity but not tumor formation. This study suggests that L-myc gene-induced conditional self-renewing fibroblast cells can be used as an in vitro tool in a variety of biomedical studies related to drug screening.


Assuntos
Autorrenovação Celular/fisiologia , Proteínas Proto-Oncogênicas c-myc/genética , Animais , Proliferação de Células , Reprogramação Celular , Cães , Feminino , Feto/citologia , Feto/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Fase G1 , Proteínas do Grupo Polycomb/metabolismo , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas c-myc/metabolismo
6.
Pharmaceuticals (Basel) ; 14(4)2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33916253

RESUMO

Stroke is a serious, adverse neurological event and the third leading cause of death and disability worldwide. Most strokes are caused by a block in cerebral blood flow, resulting in neurological deficits through the death of brain tissue. Recombinant tissue plasminogen activator (rt-PA) is currently the only immediate treatment medication for stroke. The goal of rt-PA administration is to reduce the thrombus and/or embolism via thrombolysis; however, the administration of rt-PA must occur within a very short therapeutic timeframe (3 h to 6 h) after symptom onset. Components of the pathological mechanisms involved in ischemic stroke can be used as potential biomarkers in current treatment. However, none are currently under investigation in clinical trials; thus, further studies investigating biomarkers are needed. After ischemic stroke, microglial cells can be activated and release inflammatory cytokines. These cytokines lead to severe neurotoxicity via the overactivation of microglia in prolonged and lasting insults such as stroke. Thus, the balanced regulation of microglial activation may be necessary for therapy. Stem cell therapy is a promising clinical treatment strategy for ischemic stroke. Stem cells can increase the functional recovery of damaged tissue after post-ischemic stroke through various mechanisms including the secretion of neurotrophic factors, immunomodulation, the stimulation of endogenous neurogenesis, and neovascularization. To investigate the use of stem cell therapy for neurological diseases in preclinical studies, however, it is important to develop imaging technologies that are able to evaluate disease progression and to "chase" (i.e., track or monitor) transplanted stem cells in recipients. Imaging technology development is rapidly advancing, and more sensitive techniques, such as the invasive and non-invasive multimodal techniques, are under development. Here, we summarize the potential risk factors and biomarker treatment strategies, stem cell-based therapy and emerging multimodal imaging techniques in the context of stroke. This current review provides a conceptual framework for considering the therapeutic targets and directions for the treatment of brain dysfunctions, with a particular focus on ischemic stroke.

7.
Cell Biol Int ; 44(10): 2086-2093, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32639620

RESUMO

Reactive oxygen species (ROS) act as signaling molecules to regulate various cell functions. Numerous studies have demonstrated ROS to be essential for the differentiation of adipocytes. Peroxiredoxins (Prxs) are a ubiquitous family of antioxidant enzymes in mammalian cells. Prx2 is present in the cytoplasm and cell membranes and demonstrates ROS scavenging activity. We focused on Prx2 involvement in regulating adipogenesis and lipid accumulation and demonstrated that Prx2 expression was upregulated during adipocyte differentiation. In addition, the silencing of Prx2 (shPrx2) inhibited adipogenesis by modulating adipogenic gene expression, and cell death was enhanced via increased ROS production in shPrx2-3T3-L1 cells. These results demonstrate that shPrx2 triggers adipocyte cell death and weakens adipocyte function via ROS production. Taken together, our data suggest the participation of Prx2 in adipocyte function and differentiation. Our results also imply that the downregulation of Prx2 activity could help prevent obesity. Overall, findings support the development of ROS-based therapeutic solutions for the treatment of obesity and obesity-related metabolic disorders.


Assuntos
Adipócitos , Adipogenia , Tecido Adiposo Branco/citologia , Metabolismo dos Lipídeos , Peroxirredoxinas/fisiologia , Células 3T3-L1 , Adipócitos/citologia , Adipócitos/metabolismo , Animais , Diferenciação Celular , Camundongos , Obesidade/metabolismo , Obesidade/patologia , Espécies Reativas de Oxigênio/metabolismo
8.
Free Radic Biol Med ; 123: 27-38, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29777756

RESUMO

Elevated levels of reactive oxygen species (ROS) are a hallmark of obesity. Peroxiredoxin 5 (Prx5), which is a cysteine-dependent peroxidase enzyme, has an intensive ROS scavenging activity because it is located in the cytosol and mitochondria. Therefore, we focused on the role of Prx5 in regulating mitochondrial ROS and adipogenesis. We demonstrated that Prx5 expression was upregulated during adipogenesis and Prx5 overexpression suppressed adipogenesis by regulating cytosolic and mitochondrial ROS generation. Silencing Prx5 promoted preadipocytes to differentiate into adipocytes accumulating lipids by activating adipogenic protein expression. Prx5-deletion mice fed on a high-fat diet (HFD) exhibited significant increase in body weight, enormous fat pads, and adipocyte hypertrophy in comparison to wild type mice. Prx5 deletion also remarkably induced adipogenesis-related gene expression in white adipose tissue. These phenotypic changes in Prx5-deletion mice were accompanied with lipid metabolic disorders, such as excessive lipid accumulation in the liver, severe hepatic steatosis, and high levels of triglyceride in the serum. These results demonstrated that Prx5 deletion increased the susceptibility to HFD-induced obesity and several of its associated metabolic disorders. In conclusion, we suggest that Prx5 inhibits adipogenesis by modulating ROS generation and adipogenic gene expression, implying that Prx5 may serve as a potential strategy to prevent and treat obesity.


Assuntos
Adipogenia , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Obesidade/etiologia , Estresse Oxidativo , Peroxirredoxinas/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Animais , Diferenciação Celular , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Obesos , Obesidade/metabolismo , Obesidade/patologia
9.
Free Radic Biol Med ; 123: 96-106, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29778464

RESUMO

Reactive oxygen species (ROS) produced in biological reactions have been shown to contribute to ovarian aging. Peroxiredoxin 2 (Prx2) is an antioxidant enzyme that protects cells by scavenging ROS; however, its effect on age-related, oxidative stress-associated ovarian failure has not been reported. Here, we investigated its role in age-related ovarian dysfunction and 4-vinylcyclohexene diepoxide (VCD)-induced premature ovarian failure using Prx2-deficient mice. Compared to those in wildtype (WT) mice, serum levels of anti-Müllerian hormone, 17ß-estradiol, and progesterone and numbers of follicles and corpora lutea were significantly lower in 18-month-old Prx2-/- mice. Moreover, levels of Bax, cytochrome c, cleaved caspase-3, and phosphorylated JNK proteins were higher and numbers of apoptotic (terminal deoxynucleotidyl transferase dUTP nick end labeling-positive) cells were considerably greater in 18-month-old Prx2-/- ovaries than WT ovaries. Furthermore, the effects of the ovarian toxicant VCD in significantly enhancing ROS levels and apoptosis through activation of JNK-mediated apoptotic signaling were more pronounced in Prx2-/- than WT mouse embryonic fibroblasts. Expression of the steroidogenic proteins StAR, CYP11A1, and 3ß-HSD and serum levels of 17ß-estradiol and progesterone were also reduced to a greater extent in Prx2-/- mice than WT mice after VCD injection. This reduced steroidogenesis was rescued by addition of the Prx mimic ebselen or JNK inhibitor SP600125. This constitutes the first report that Prx2 deficiency leads to acceleration of age-related or VCD-induced ovarian failure by activation of the ROS-induced JNK pathway. These findings suggest that Prx2 plays an important role in preventing accelerated ovarian failure by inhibiting ROS-induced JNK activation.


Assuntos
Envelhecimento , Sistema de Sinalização das MAP Quinases , Doenças Ovarianas/patologia , Folículo Ovariano/patologia , Estresse Oxidativo , Peroxirredoxinas/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Animais , Apoptose , Carcinógenos/toxicidade , Corpo Lúteo/efeitos dos fármacos , Corpo Lúteo/metabolismo , Corpo Lúteo/patologia , Cicloexenos/toxicidade , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Doenças Ovarianas/induzido quimicamente , Doenças Ovarianas/metabolismo , Folículo Ovariano/efeitos dos fármacos , Folículo Ovariano/metabolismo , Transdução de Sinais , Compostos de Vinila/toxicidade
10.
Int J Biochem Cell Biol ; 99: 80-90, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29605633

RESUMO

Insulin signaling is essential for regulating glucose homeostasis. Numerous studies have demonstrated that reactive oxygen species (ROS) affect insulin signaling, and low ROS levels can act as a signal to regulate cellular function. Peroxiredoxins (Prxs) are highly abundant and widely expressed antioxidant enzymes. However, it is unclear whether antioxidant enzymes, such as Prx2, mediate insulin signaling. The aim of our study was to investigate the influence of Prx2 deficiency on insulin signaling. Our western blot results showed that Prx2 deficiency enhanced insulin signaling and increased oxidation of protein tyrosine phosphatase 1B (PTP1B) and phosphatase and tensin homologue (PTEN) in mouse embryonic fibroblasts (MEFs) treated with insulin. In addition, we assessed ROS levels with a Cytosol-HyPer H2O2 sensor. As a result, increased ROS levels and Akt activation were decreased by N-acetyl-cysteine (Nac), which acted as an antioxidant in Prx2-deficient MEFs. Body weight measurements and glucose tolerance test (GTT) revealed significant body weight reduction and increase in glucose clearance in Prx2-/- mice fed a high-fat diet. Interestingly, glucose transporter type 4 (GLUT4) was significantly higher in Prx2-/- mice than in wild-type mice according to western blotting results. Western blotting also revealed that Akt phosphorylation was higher in Prx2-/- MEFs and muscle tissue than in wild-type. Together, our findings indicate that increased ROS due to Prx2 deficiency promotes insulin sensitivity and glucose clearance in skeletal muscles by increasing protein tyrosine phosphatase (PTPs) oxidation. These results provide novel insights into the fundamental mechanisms of insulin signaling induced by Prx2 deficiency and suggest that ROS-based therapeutic strategies can be used to suppress insulin resistance.


Assuntos
Regulação da Expressão Gênica/efeitos dos fármacos , Proteínas de Homeodomínio/fisiologia , Resistência à Insulina , Insulina/farmacologia , Músculo Esquelético/efeitos dos fármacos , Proteínas Tirosina Fosfatases/química , Espécies Reativas de Oxigênio/metabolismo , Animais , Células Cultivadas , Embrião de Mamíferos/citologia , Embrião de Mamíferos/efeitos dos fármacos , Embrião de Mamíferos/metabolismo , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Glucose/metabolismo , Teste de Tolerância a Glucose , Hipoglicemiantes/farmacologia , Masculino , Camundongos , Camundongos Knockout , Músculo Esquelético/citologia , Músculo Esquelético/metabolismo , Oxirredução , Fosforilação , Proteínas Tirosina Fosfatases/genética , Proteínas Tirosina Fosfatases/metabolismo , Transdução de Sinais
11.
PLoS One ; 12(10): e0185764, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28968439

RESUMO

Adipocyte differentiation is regulated by intracellular reactive oxygen species (ROS) generation and mitochondrial fission and fusion processes. However, the correlation between intracellular ROS generation and mitochondrial remodeling during adipocyte differentiation is still unknown. Here, we investigated the effect on adipocyte differentiation of 3T3-L1 cells of intracellular ROS inhibition using N-acetyl cysteine (Nac) and Mito-TEMPO and of mitochondrial fission inhibition using Mdivi-1. Differentiated 3T3-L1 adipocytes displayed an increase in mitochondrial fission, ROS generation, and the expression of adipogenic and mitochondrial dynamics-related proteins. ROS scavenger (Nac or Mito-TEMPO) treatment inhibited ROS production, lipid accumulation, the expression of adipogenic and mitochondrial dynamics-related proteins, and mitochondrial fission during adipogenesis of 3T3-L1 cells. On the other hand, treatment with the mitochondrial fission inhibitor Mdivi-1 inhibited mitochondrial fission but did not inhibit ROS production, lipid accumulation, or the expression of adipogenic and mitochondrial dynamics-related proteins, with the exception of phosphorylated Drp1 (Ser616), in differentiated 3T3-L1 adipocytes. The inhibition of mitochondrial fission did not affect adipocyte differentiation, while intracellular ROS production decreased in parallel with inhibition of adipocyte differentiation. Therefore, our results indicated that ROS are an essential regulator of adipocyte differentiation in 3T3-L1 cells.


Assuntos
Dinaminas/antagonistas & inibidores , Radicais Livres/metabolismo , Insulina/farmacologia , Metabolismo dos Lipídeos , Quinazolinonas/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Células 3T3-L1 , Adipócitos/citologia , Adipócitos/metabolismo , Animais , Antioxidantes/metabolismo , Camundongos
12.
Free Radic Biol Med ; 108: 44-55, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28323129

RESUMO

Luteal regression is a natural and necessary event to regulate the reproductive process in all mammals. Prostaglandin F2α (PGF2α) is the main factor that causes functional and structural regression of the corpus luteum (CL). It is well known that PGF2α-mediated ROS generation is closely involved in luteal regression. Peroxiredoxin 2 (Prx2) as an antioxidant enzyme plays a protective role against oxidative stress-induced cell death. However, the effect of Prx2 on PGF2α-induced luteal regression has not been reported. Here, we investigated the role of Prx2 in functional and structural CL regression induced by PGF2α-mediated ROS using Prx2-deficient (-/-) mice. We found that PGF2α-induced ROS generation was significantly higher in Prx2-/- MEF cells compared with that in wild-type (WT) cells, which induced apoptosis by activating JNK-mediated apoptotic signaling pathway. Also, PGF2α treatment in the CL derived from Prx2-/- mice promoted the reduction of steroidogenic enzyme expression and the activation of JNK and caspase3. Compared to WT mice, serum progesterone levels and luteal expression of steroidogenic enzymes decreased more rapidly whereas JNK and caspase3 activations were significantly increased in Prx2-/- mice injected with PGF2α. However, the impaired steroidogenesis and PGF2α-induced JNK-dependent apoptosis were rescued by the addition of the antioxidant N-acetyl-L-cysteine (NAC). This is the first study to demonstrate that Prx2 deficiency ultimately accelerated the PGF2α-induced luteal regression through activation of the ROS-dependent JNK pathway. These findings suggest that Prx2 plays a crucial role in preventing accelerated luteal regression via inhibition of the ROS/JNK pathway.


Assuntos
Corpo Lúteo/fisiologia , Luteólise/fisiologia , Peroxirredoxinas/metabolismo , Animais , Apoptose , Caspase 3/metabolismo , Células Cultivadas , Corpo Lúteo/patologia , Dinoprosta/metabolismo , Feminino , Sistema de Sinalização das MAP Quinases , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Peroxirredoxinas/genética , Espécies Reativas de Oxigênio/metabolismo
13.
Food Chem Toxicol ; 93: 5-12, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27117918

RESUMO

Isoliquritigenin (ISL) is an abundant dietary flavonoid with a chalcone structure, which is an important constituent in Glycyrrhizae Radix (GR). ISL exhibits anti-oxidant activity, and this activity has been shown to play a beneficial role in various health conditions. However, it is unclear whether the anti-oxidant activity of ISL affects insulin signaling pathway and lipid accumulation of adipocytes. We sought to investigate the effects and molecular mechanisms of ISL on insulin-stimulated adipogenesis in 3T3-L1 cells. We investigated whether ISL attenuates insulin-induced Reactive Oxygen Species (ROS) generation, and whether ISL inhibits the lipid accumulation and the expression of adipogenic-genes during the differentiation of 3T3-L1 cells. ISL blocked the ROS generation, suppressed the lipid accumulation and the expression of adipocyte-specific proteins, which are increased in response to insulin stimulation during adipocyte differentiation of 3T3-L1 cells. We also investigated whether the anti-oxidant capacity of ISL is involved in regulating the molecular events of insulin-signaling cascade in 3T3-L1 adipocytes. ISL restores PTP1B activity by inhibiting PTP1B oxidation and IR/PI3K/AKT phosphorylation during the early stages of insulin-induced adipogenesis. Our findings show that the anti-oxidant capacity of ISL attenuated insulin IR/PI3K/AKT signaling through inhibition of PTP1B oxidation, and ultimately attenuated insulin-induced adipocyte differentiation of 3T3-L1 cells.


Assuntos
Adipócitos/citologia , Diferenciação Celular/efeitos dos fármacos , Chalconas/farmacologia , Inibidores Enzimáticos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Insulina/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 1/antagonistas & inibidores , Células 3T3-L1 , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Adipogenia/efeitos dos fármacos , Animais , Western Blotting , Hipoglicemiantes/metabolismo , Imunoprecipitação , Lipídeos/química , Camundongos , Oxirredução , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação/efeitos dos fármacos , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos
14.
Life Sci ; 146: 184-91, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26739509

RESUMO

AIMS: Leydig cells are characterized by their ability to produce testosterone. When the Leydig cells are unable to produce enough testosterone, spermatogenesis fails completely. Considering this, it is of great interest to investigate whether the expressions of steroidogenic enzymes are affected by testicular heat stress. This study aimed to demonstrate that heat induced ER-stress significantly influences steroidogenic enzyme expression and testosterone production in the Leydig cells. MAIN METHODS: C57BL/6 mice were subjected to repetitive testicular heat-treatment at 42 °C for 15 min per day, and heat-treated mLTC-1 cells following hCG treatment for 1h. The protein and RNA expressions were measured by Western blot, RT-PCR. The testosterone and progesterone levels were detected by EIA. The histological and pathological characteristics using hematoxylin and eosin (H&E) and antibody stains. KEY FINDINGS: The 3ß-HSD expression was decreased by heat-stress and hCG treatment. While the GRP78/BiP and CHOP levels were increased by ER-stress inducers, those of the steroidogenic enzyme and progesterone were decreased. In contrast, an ER-stress inhibitor rescued the testosterone levels, even under heat-stress conditions. Moreover, the Leydig cells were randomly scattered, and severely damaged upon repetitive testicular heat-treatment. Additionally, immunohistochemical analyses revealed that cleaved caspase-3 was elevated in the testicular Leydig cells, and rescued by TUDCA. Thus, repetitive testicular heat-treatment in mice promotes excessive ER-stress, thereby leading to apoptosis of the Leydig cells and thus, decreased testosterone production. SIGNIFICANCE: Our findings help to provide an ER-stress mediate mechanistic explanation to the impairment of spermatogenesis upon elevation of the testicular temperature.


Assuntos
Estresse do Retículo Endoplasmático , Hipertermia Induzida , Tumor de Células de Leydig/metabolismo , Testosterona/biossíntese , 3-Hidroxiesteroide Desidrogenases/metabolismo , Animais , Apoptose/efeitos dos fármacos , Caspase 3/metabolismo , Linhagem Celular Tumoral , Gonadotropina Coriônica/farmacologia , Chaperona BiP do Retículo Endoplasmático , Proteínas de Choque Térmico/biossíntese , Temperatura Alta , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Progesterona/biossíntese , RNA/biossíntese , Esteroides/biossíntese , Fator de Transcrição CHOP/biossíntese
15.
Toxicology ; 337: 39-46, 2015 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-26318285

RESUMO

The accumulation of iron in neurons has been proposed to contribute to the pathology of numerous neurodegenerative diseases, such as Alzheimer's disease and Parkinson's disease. However, insufficient research has been conducted on the precise mechanism underlying iron toxicity in neurons. In this study, we investigated mitochondrial dynamics in hippocampal HT-22 neurons exposed to ferric ammonium citrate (FAC) as a model of iron overload and neurodegeneration. Incubation with 150 µM FAC for 48 h resulted in decreased cell viability and apoptotic death in HT-22 cells. The FAC-induced iron overload triggered mitochondrial fragmentation, which was accompanied by Drp1(Ser637) dephosphorylation. Iron chelation with deferoxamine prevented the FAC-induced mitochondrial fragmentation and apoptotic cell death by inhibiting Drp1(Ser637) dephosphorylation. In addition, a S637D mutation of Drp1, which resulted in a phosphorylation-mimetic form of Drp1 at Ser637, protected against the FAC-induced mitochondrial fragmentation and neuronal apoptosis. FK506 and cyclosporine A, inhibitors of calcineurin activation, determined that calcineurin was associated with the iron-induced changes in mitochondrial morphology and the phosphorylation levels of Drp1. These results indicate that the FAC-induced dephosphorylation of Drp1-dependent mitochondrial fragmentation was rescued by the inhibition of calcineurin activation. Therefore, these findings suggest that calcineurin-mediated phosphorylation of Drp1(Ser637) acts as a key regulator of neuronal cell loss by modulating mitochondrial dynamics in iron-induced toxicity. These results may contribute to the development of novel therapies for treatment of neurodegenerative disorders related to iron toxicity.


Assuntos
Calcineurina/farmacologia , Hipocampo/efeitos dos fármacos , Hipocampo/patologia , Sobrecarga de Ferro/patologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/patologia , Neurônios/efeitos dos fármacos , Neurônios/patologia , Animais , Apoptose/efeitos dos fármacos , Calcineurina/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Dinaminas/efeitos dos fármacos , Camundongos , Mitocôndrias/ultraestrutura , Interferência de RNA , Transdução de Sinais/efeitos dos fármacos
16.
Arterioscler Thromb Vasc Biol ; 34(10): 2276-82, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25147341

RESUMO

OBJECTIVE: Angiogenesis is an important biological process during development, reproduction, and in immune responses. Placental growth factor (PlGF) is a member of vascular endothelial growth factor that is critical for angiogenesis and vasculogenesis. We generated transgenic mice overexpressing PlGF in specifically T cells using the human CD2-promoter to investigate the effects of PlGF overexpression. APPROACH AND RESULTS: Transgenic mice were difficult to obtain owing to high lethality; for this reason, we investigated why gestational loss occurred in these transgenic mice. Here, we report that placenta detachment and inhibition of angiogenesis occurred in PlGF transgenic mice during the gestational period. Moreover, even when transgenic mice were born, their growth was restricted. CONCLUSIONS: Conclusively, PlGF overexpression prevents angiogenesis by inhibiting Braf, extracellular signal-regulated kinase activation, and downregulation of HIF-1α in the mouse placenta. Furthermore, it affected regulatory T cells, which are important for maintenance of pregnancy.


Assuntos
Morte Fetal/metabolismo , Retardo do Crescimento Fetal/metabolismo , Neovascularização Fisiológica , Placenta/irrigação sanguínea , Placenta/metabolismo , Proteínas da Gravidez/metabolismo , Linfócitos T Reguladores/metabolismo , Animais , Peso Corporal , Antígenos CD2/genética , Células Cultivadas , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Morte Fetal/genética , Morte Fetal/fisiopatologia , Retardo do Crescimento Fetal/genética , Retardo do Crescimento Fetal/fisiopatologia , Idade Gestacional , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Tamanho da Ninhada de Vivíparos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fator de Crescimento Placentário , Gravidez , Proteínas da Gravidez/genética , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas B-raf/metabolismo , Transdução de Sinais , Regulação para Cima
17.
J Neurochem ; 127(2): 221-32, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23815397

RESUMO

Over-activation of microglia cells in the brain contributes to neurodegenerative processes promoted by the production of various neurotoxic factors including pro-inflammatory cytokines and nitric oxide. Recently, accumulating evidence has suggested that mitochondrial dynamics are an important constituent of cellular quality control and function. However, the role of mitochondrial dynamics in microglial activation is still largely unknown. In this study, we determined whether mitochondrial dynamics are associated with the production of pro-inflammatory mediators in lipopolysaccharide (LPS)-stimulated immortalization of murine microglial cells (BV-2) by a v-raf/v-myc carrying retrovirus (J2). Excessive mitochondrial fission was observed in lentivirus-transfected BV-2 cells stably expressing DsRed2-mito following LPS stimulation. Furthermore, mitochondrial localization of dynamin-related protein 1 (Drp1) (a key regulator of mitochondrial fission) was increased and accompanied by de-phosphorylation of Ser637 in Drp1. Interestingly, inhibition of LPS-induced mitochondrial fission and reactive oxygen species (ROS) generation by Mdivi-1 and Drp1 knock-down attenuated the production of pro-inflammatory mediators via reduced nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and mitogen-activated protein kinase (MAPK) signaling. Our results demonstrated for the first time that mitochondrial fission regulates mitochondrial ROS production in activated microglial cells and influences the expression of pro-inflammatory mediators through the activation of NF-κB and MAPK. We therefore suggest that mitochondrial dynamics may be essential for understanding pro-inflammatory mediator expression in activated microglial cells. This could represent a new therapeutic approach for preventing neurodegenerative diseases.


Assuntos
Mediadores da Inflamação/metabolismo , Microglia/metabolismo , Mitocôndrias/fisiologia , Animais , Western Blotting , Linhagem Celular , Células Cultivadas , Ativação Enzimática/efeitos dos fármacos , Vetores Genéticos , Lentivirus/genética , Lipopolissacarídeos/farmacologia , Camundongos , Microglia/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Reação em Cadeia da Polimerase em Tempo Real
18.
Biochem Biophys Res Commun ; 434(4): 861-6, 2013 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-23611781

RESUMO

The testes of most mammals are sensitive to temperature. To survive and adapt under conditions that promote endoplasmic reticulum (ER) stress such as heat shock, cells have a self-protective mechanism against ER stress that has been termed the "Unfolded Protein Response" (UPR). However, the cellular and molecular events underlying spermatogenesis with testicular hyperthermia involved in the UPR signaling pathway under ER stress remain poorly understood. In the present study, we verified that UPR signaling via phospho-eIF2α/ATF4/GADD34, p90ATF6, and phospho-IRE1α/XBP-1 is activated with testicular hyperthermia (43 °C, 15 min/day) and induced ER stress-mediated apoptosis associated with CHOP, phospho-JNK, and caspase-3 after repetitive periods of hyperthermia. Levels of phospho-eIF2α protein of mouse spermatocytes in the testis were rapidly increased by one cycle of testicular hyperthermia. ATF4/GADD34 and p90ATF6 expression gradually increased and decreased, respectively, with repetitive cycles of hyperthermia. Spliced XBP1 mRNA as a marker of IRE1 activity was increased after one, three cycles of hyperthermia and decreased by five cycles of hyperthermia. Although the levels of anti-apoptotic phospho-JNK (p54) were gradually decreased after three cycles of hyperthermia, CHOP expression was rapidly increased. After five cycles of testicular hyperthermia, the levels of cleaved caspase-3 and TUNEL-positive apoptotic spermatocytes cells were significantly increased. Our data demonstrated that testicular hyperthermia induces UPR signaling and repetitive cycles of hyperthermia lead to apoptosis of spermatocytes in mouse testis. These results suggest a link between the UPR signaling pathway and testicular hyperthermia.


Assuntos
Temperatura Alta , Transdução de Sinais/fisiologia , Espermatócitos/metabolismo , Testículo/metabolismo , Resposta a Proteínas não Dobradas/fisiologia , Fator 4 Ativador da Transcrição/metabolismo , Fator 6 Ativador da Transcrição/metabolismo , Processamento Alternativo , Animais , Apoptose/genética , Apoptose/fisiologia , Western Blotting , Caspase 3/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Estresse do Retículo Endoplasmático/genética , Estresse do Retículo Endoplasmático/fisiologia , Endorribonucleases/metabolismo , Fator de Iniciação 2 em Eucariotos/metabolismo , Imuno-Histoquímica , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteína Fosfatase 1/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Fatores de Transcrição de Fator Regulador X , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/genética , Fator de Transcrição CHOP/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Resposta a Proteínas não Dobradas/genética , Proteína 1 de Ligação a X-Box
19.
Chemistry ; 16(8): 2427-41, 2010 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-20066699

RESUMO

A series of bis-dendritic gelators consisting of a benzamide dendron and an alkyl dendron were synthesized to investigate the dendritic effect on self-assembly. The gelators with a first-generation benzamide (benzamide-G1) dendron or a first-generation alkyl (alkyl-G1) dendron formed stable gels in most aromatic solvents, and their self-assembled fibrillar networks were imaged by electron microscopy. The unbranched molecule (G0-G0) or the molecule possessing a second-generation benzamide (benzamide-G2) dendron did not form gels. Differential scanning calorimetry, powder X-ray diffraction, and Fourier transform IR studies revealed that introduction of a dendritic branch strongly affected the molecular packing as well as the strength of intermolecular interactions. Furthermore, concentration-dependent diffusion coefficient measurements and the evaluation of association constants by (1)H NMR spectroscopy indicated that bis-dendritic gelators with a benzamide-G1 dendron possessed high association constants and formed large aggregates, whereas molecules with a single benzamide formed dimers in chloroform. The formation of self-assembled fibrillar networks was driven by the multivalent and cooperative hydrogen bonding observed in the benzamide-G1 dendrons. Pi-pi stacking of aromatic groups and van der Waals interactions between alkyl chains also played roles in the self-assembly process, thus indicating that a spatial balance between two dendrons is important.

20.
Langmuir ; 25(3): 1761-6, 2009 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-19125558

RESUMO

An asymmetric bis-dendritic gelator (1) consisting of an azobenzene dendron and an aliphatic amide dendron was synthesized to achieve a photoresponsive self-assembly. The compound gelled in a wide range of organic solvents, even at concentrations as low as 0.02% (w/v) in cyclohexane. The self-assembled fibrillar network structure was confirmed by field-emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM), and X-ray diffraction (XRD) analyses. The rapid and reversible gel-sol transition by irradiation with UV and visible light was investigated by UV-vis and Fourier transform infrared (FT-IR) spectroscopy, FE-SEM, and XRD analyses. Upon irradiation of the gel with UV, trans-to-cis isomerization of the azobenzene groups occurred, and the gel turned into a sol state. The gel was recovered immediately by the reverse cis-to-trans isomerization after the exposure to visible light. The trans-to-cis isomerization of the azobenzenes disrupted the hydrogen bonding of azobenzene amide groups, together with the hydrogen bonding in the aliphatic amide dendron. This facile communication between the two amide dendrons leads to the dissociation of the gel fibers and collapse of the gel.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...